CoLearn: Enabling Federated Learning in MUD compliant IoT Edge Networks

Angelo Feraudo¹, Poonam Yadav², Vadim Safronov³, Diana Andreea Popescu³, Richard Mortier³, Shiqiang Wang⁴, Paolo Bellavista¹, Jon Crowcroft³

¹University of Bologna, Italy, ²University of York, UK

³University of Cambridge, UK, ⁴IBM Research, USA

International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2020) Co-located with EuroSys 2020

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

IoT devices are **resource-constrained** and **highly heterogeneous** in both underlying system capability and statistical network behaviour, and are widely distributed

IoT devices are **resource-constrained** and **highly heterogeneous** in both underlying system capability and statistical network behaviour, and are widely distributed

MOTIVATIONS: INITIAL GOAL

Initial Goal

Improving security systems in IoT environments by preserving privacy of generated data

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

With this work we **provide**:

CoLearn an infrastructure that aims to create safe deployment conditions for IoT devices

With this work we demonstrate:

- an **asynchronous participation mechanism** for IoT devices in machine learning model training using a publish/subscribe architecture
- a mechanism for reducing the attack surface in Federated Learning architecture
- a **trade-off** between communication bandwidth usage, training time and device temperature

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

MANUFACTURER USAGE DESCRIPTION SPECIFICATION

3. https://www.mfs.example.com/mudFile.isor

mudFile.json

IoT devices are able to **signal** to the network which **functionalities need** to properly work

The MUD standard **restricts** and **limits** traffic end-points and rates in and out of IoT devices

NETWORK

((**•**))

5. COMM PATTERN

(ACL)

MUD Manager

2 MUD-UBI

UD URI

Thing

Server

MANUFACTURER USAGE DESCRIPTION SPECIFICATION

IoT devices are able to signal to the network which functionalities need to properly work

The MUD standard restricts and limits traffic end-points and rates in and out of IoT devices

MUD COMPLIANT NETWORK

Problem 1

MUD rules could be not sufficient, even if all devices are MUD compliant: individual users may have their deployment setup which may require specific rules

Problem 2

Manufacturers **are not able to define rules for IoT devices that behave as general purpose devices** (Alexa, Google Home, smartphone etc.), and users as well

USER POLICY SERVER (UPS)

It provides the opportunity to an administrator/end-user to **interact with MUD components through a user-friendly interface**, thus allowing to **define rules suitable for the network in which MUD is deployed**¹

The administrator rules are defined through specific MUD Files (UPS Files).

¹SoK: Beyond IoT MUD Deployments – Challenges and Future Directions, https://arxiv.org/abs/2004.08003

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

FEDERATED LEARNING: OVERVIEW

"bringing the code to the data, instead of the data to the code"

This approach allows to do **model learning on edge-devices**, while **keeping all the training data on them**

Implementation problems:

- 1. Model distribution
- 2. Device's state communication
- 3. Training requests management
- 4. Model cryptography (?)

Model distribution

 \rightarrow PySyft framework that employs WebSockets to communicate the global model to Federated Learning participants and is built on top of PyTorch

- Device's state communication
 - \rightarrow Pattern <code>publish/subscribe</code> implemented through <code>MQTT</code>
 - \rightarrow Three states: TRAINING, INFERENCE, NOT_READY

FEDERATED LEARNING: OUR APPROACH

• Training requests management

 \rightarrow We introduce the **temporal window** concept, in which the Coordinator waits and collects training requests.

 $\rightarrow \mbox{The}$ devices can \mbox{remove} or \mbox{drop} themselves from the Coordinator's devices list

 \rightarrow Useful to define lower bound threshold, upper bound threshold and device selection criteria

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

COLEARN: MUD AND FL TOGETHER

- Introduction of an entity hosting UPS and FL Coordinator
- **Device filtering**: only MUD compliant devices can participate in the Federated Learning Protocol

DEPLOYMENT

- Router: NETGEAR WNDR 3700v2
- Machine hosting UPS and Coordinator: MacBook Pro Intel Core i5 e 8 GB RAM
- Edge devices: two Raspberry Pi 3B+ running FL clients and supporting the Python environment needed for PySyft.
- Data-set: Bot-IoT Dataset²
- **Computational model**: Feed-Forward neural network (2 hidden layers, one with 50 neurons and the other with 30 neurons, an input size of 10)

²https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ ADFA-NB15-Datasets/bot_iot.php

COLEARN EVALUATIONS

Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

• The **number of iterations** influences the **temperature** of the components involved

Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

- The **number of iterations** influences the **temperature** of the components involved
- Total outgoing traffic, as expected, is strictly correlated to the model dimension, number of rounds, and the number of devices involved

Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

- The **number of iterations** influences the **temperature** of the components involved
- Total outgoing traffic, as expected, is strictly correlated to the model dimension, number of rounds, and the number of devices involved
- As expected, the **total training time** increases with total number of iterations

	Iterations	Rounds	Total	Training	Training
			iterations	time (s)	loss
1	1000	3	3000	26.868	0.001814
2	1000	6	6000	53.148	0.001068
3	1000	12	12000	105.921	0.000863
4	2000	3	6000	38.378	0.00107
5	2000	6	12000	76.139	0.000877
6	3000	3	9000	56.467	0.000957
7	3000	6	18000	112.247	0.000852

Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

- The **number of iterations** influences the **temperature** of the components involved
- Total outgoing traffic, as expected, is strictly correlated to the model dimension, number of rounds, and the number of devices involved
- As expected, the **total training time** increases with total number of iterations

	Iterations	Rounds	Total	Training	Training
			iterations	time (s)	loss
1	1000	3	3000	26.868	0.001814
2	1000	6	6000	53.148	0.001068
3	1000	12	12000	105.921	0.000863
4	2000	3	6000	38.378	0.00107
5	2000	6	12000	76.139	0.000877
6	3000	3	9000	56.467	0.000957
7	3000	6	18000	112.247	0.000852

Secure Multi-Party Computation: it replaces the key concept with party concept

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

In summary we provided:

- a user-friendly interface able to interact with MUD components
- infrastructure Federated Learning based able to interact with real devices
- a direction to optimise the Federated Learning trade-off
- infrastructure that can use and train **anomaly detection models** and ready for **Transfer Learning**
- to the best of our knowledge, the first deployment $\ensuremath{\mbox{hosting both MUD}}$ and $\ensuremath{\mbox{FL}}$

In the current CoLearn deployment:

- we assumed that edge devices (RPis) do not fail in the training phases and during their activity of traffic eavesdropping.
- we did not focus on IoT device identification and authentication, which is vital for both MUD-compliant networks and FL architecture

Future CoLearn deployment could include:

- Extension of YANG-based MUD file by adding a field containing structure and weights of a model
- Improving of UPS functionalities
- Adaptive temporal window sizing

Q&A

For more info, please contact: Angelo Feraudo <angelo.feraudo@studio.unibo.it> (<aferaudo34@gmail.com>) Dr Poonam Yadav <poonam.yadav@york.ac.uk> (@pooyadav)