CoLearn: Enabling Federated Learning in MUD compliant IoT Edge Networks

Angelo Feraudo\(^1\), Poonam Yadav\(^2\), Vadim Safronov\(^3\), Diana Andreea Popescu\(^3\), Richard Mortier\(^3\), Shiqiang Wang\(^4\), Paolo Bellavista\(^1\), Jon Crowcroft\(^3\)

\(^1\)University of Bologna, Italy, \(^2\)University of York, UK
\(^3\)University of Cambridge, UK, \(^4\)IBM Research, USA

International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2020)
Co-located with EuroSys 2020
Motivations

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

Conclusion and Future Works
IoT devices are **resource-constrained** and **highly heterogeneous** in both underlying system capability and statistical network behaviour, and are widely distributed.
Motivations: Internet of Things

IoT devices are resource-constrained and highly heterogeneous in both underlying system capability and statistical network behaviour, and are widely distributed.
Motivations: Initial Goal

Improving security systems in IoT environments by preserving privacy of generated data
Agenda

Motivations

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

Conclusion and Future Works
With this work we provide:

CoLearn an infrastructure that aims to create safe deployment conditions for IoT devices

With this work we demonstrate:

- an asynchronous participation mechanism for IoT devices in machine learning model training using a publish/subscribe architecture
- a mechanism for reducing the attack surface in Federated Learning architecture
- a trade-off between communication bandwidth usage, training time and device temperature
AGENDA

Motivations

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

Conclusion and Future Works
IoT devices are able to **signal** to the network which **functionalities need** to properly work.

The MUD standard **restricts** and **limits** traffic end-points and rates in and out of IoT devices.
IoT devices are able to **signal** to the network which **functionalities need** to properly work.

The MUD standard **restricts** and **limits** traffic end-points and rates in and out of IoT devices.

```json
"acl": {
  "name": "mud-96898-v4to",
  "type": "ipv4-acl-type",
  "aces": {
    "name": "mud-96898-v4to",
    "matches": {
      "ipv4": {
        "iofl-acldns:src-dnsname": "cloud-service.example.com"
      }
    }
  }
},
"actions": {
  "forwarding": "accept"
}
}
```
MUD COMPLIANT NETWORK
| Problem 1 | MUD rules could be not sufficient, even if all devices are MUD compliant: individual users may have their deployment setup which may require specific rules |
| Problem 2 | Manufacturers are not able to define rules for IoT devices that behave as general purpose devices (Alexa, Google Home, smartphone etc.), and users as well |
It provides the opportunity to an administrator/end-user to interact with MUD components through a user-friendly interface, thus allowing to define rules suitable for the network in which MUD is deployed.

The administrator rules are defined through specific MUD Files (UPS Files).

AGENDA

Motivations

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

Conclusion and Future Works
“bringing the code to the data, instead of the data to the code”

This approach allows to do model learning on edge-devices, while keeping all the training data on them.

Implementation problems:

1. Model distribution
2. Device’s state communication
3. Training requests management
4. Model cryptography (?)
Federated Learning: Our approach

- Model distribution
 → PySyft framework that employs WebSockets to communicate the global model to Federated Learning participants and is built on top of PyTorch

- Device’s state communication
 → Pattern publish/subscribe implemented through MQTT
 → Three states: TRAINING, INFERENCE, NOT_READY
Federated Learning: Our approach

- Training requests management

 → We introduce the *temporal window* concept, in which the Coordinator waits and collects training requests.

 → The devices can **remove** or **drop** themselves from the Coordinator’s devices list

 → Useful to define **lower bound threshold**, **upper bound threshold** and **device selection criteria**
Motivations

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

Conclusion and Future Works
CoLearn: MUD and FL together

- Introduction of an **entity** hosting UPS and FL Coordinator
- **Device filtering**: only MUD compliant devices can participate in the Federated Learning Protocol
Deployment

- **Router**: NETGEAR WNDR 3700v2
- **Machine hosting UPS and Coordinator**: MacBook Pro Intel Core i5 e 8 GB RAM
- **Edge devices**: two Raspberry Pi 3B+ running FL clients and supporting the Python environment needed for PySyft.
- **Data-set**: Bot-IoT Dataset\(^2\)
- **Computational model**: Feed-Forward neural network (2 hidden layers, one with 50 neurons and the other with 30 neurons, an input size of 10)

Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

- The number of iterations influences the temperature of the components involved
Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

- The number of iterations influences the temperature of the components involved
- Total outgoing traffic, as expected, is strictly correlated to the model dimension, number of rounds, and the number of devices involved
Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

- The **number of iterations** influences the **temperature** of the components involved.
- **Total outgoing traffic**, as expected, is strictly correlated to the **model dimension**, **number of rounds**, and the **number of devices** involved.
- As expected, the **total training time** increases with total number of iterations.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Rounds</th>
<th>Total iterations</th>
<th>Training time (s)</th>
<th>Training loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>3</td>
<td>3000</td>
<td>26.868</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>6</td>
<td>6000</td>
<td>53.148</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>12</td>
<td>12000</td>
<td>105.921</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>3</td>
<td>6000</td>
<td>38.378</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td>6</td>
<td>12000</td>
<td>76.139</td>
</tr>
<tr>
<td>6</td>
<td>3000</td>
<td>3</td>
<td>9000</td>
<td>56.467</td>
</tr>
<tr>
<td>7</td>
<td>3000</td>
<td>6</td>
<td>18000</td>
<td>112.247</td>
</tr>
</tbody>
</table>
CoLearn evaluations

Experiments performed: Temperature monitoring, Bandwidth monitoring, Training Loss, Training Time

- The number of iterations influences the temperature of the components involved
- Total outgoing traffic, as expected, is strictly correlated to the model dimension, number of rounds, and the number of devices involved
- As expected, the total training time increases with total number of iterations

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Rounds</th>
<th>Total iterations</th>
<th>Training time (s)</th>
<th>Training loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>3</td>
<td>3000</td>
<td>26.868</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>6</td>
<td>6000</td>
<td>53.148</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>12</td>
<td>12000</td>
<td>105.921</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>3</td>
<td>6000</td>
<td>38.378</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td>6</td>
<td>12000</td>
<td>76.139</td>
</tr>
<tr>
<td>6</td>
<td>3000</td>
<td>3</td>
<td>9000</td>
<td>56.467</td>
</tr>
<tr>
<td>7</td>
<td>3000</td>
<td>6</td>
<td>18000</td>
<td>112.247</td>
</tr>
</tbody>
</table>
Secure Multi-Party Computation: it replaces the key concept with party concept
AGENDA

Motivations

Contributions

Manufacturer Usage Description (RFC 8520)

Federated Learning

CoLearn

Conclusion and Future Works
In summary we provided:

- a **user-friendly interface** able to interact with MUD components
- infrastructure **Federated Learning based** able to interact with real devices
- a direction to optimise the Federated Learning trade-off
- infrastructure that can use and train **anomaly detection models** and ready for **Transfer Learning**
- to the best of our knowledge, the first deployment **hosting both MUD and FL**
In the current CoLearn deployment:

- we assumed that edge devices (RPis) do not fail in the training phases and during their activity of traffic eavesdropping.
- we did not focus on IoT device identification and authentication, which is vital for both MUD-compliant networks and FL architecture.

Future CoLearn deployment could include:

- Extension of YANG-based MUD file by adding a field containing structure and weights of a model
- Improving of UPS functionalities
- Adaptive temporal window sizing
Thanks!

Questions?

For more info, please contact:
Angelo Feraudo <angelo.feraudo@studio.unibo.it> (<aferaudo34@gmail.com>)
Dr Poonam Yadav <poonam.yadav@york.ac.uk> (@pooyadav)