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Motivations: Internet of Things

IoT devices are resource-constrained and highly heterogeneous in both
underlying system capability and statistical network behaviour, and are
widely distributed
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Motivations: Initial Goal

Initial Goal

Improving security systems in IoT environments by preserving privacy
of generated data
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Contributions

With this work we provide:

CoLearn an infrastructure that aims to create safe deployment conditions
for IoT devices

With this work we demonstrate:

• an asynchronous participation mechanism for IoT devices in machine
learning model training using a publish/subscribe architecture

• a mechanism for reducing the attack surface in Federated Learning
architecture

• a trade-off between communication bandwidth usage, training time and
device temperature
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Manufacturer Usage Description Specification

IoT devices are able to signal to
the network which functionalities
need to properly work

The MUD standard restricts
and limits traffic end-points
and rates in and out of IoT devices

5. COMM.
PATTERN

(ACL)
2. MUD-URL

1. MUD URL

Thing

NETWORK

mudFile.json

4.

3. https://www.mfs.example.com/mudFile.jsonMUD Manager MUD File
Server

7



Manufacturer Usage Description Specification

IoT devices are able to signal to
the network which functionalities
need to properly work

The MUD standard restricts
and limits traffic end-points
and rates in and out of IoT devices

ROUTER OpenWRT

DNS

DNSMASQ firewall

5. COMM.
PATTERN

(ACL)

DHCP
Server

2. MUD-URL

1. MUD URL

Thing

NETWORK

mudFile.json

4.

3. https://www.mfs.example.com/mudFile.jsonMUD Manager
(osMUD)

MUD File
Server

7



MUD compliant Network
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MUD Problems

Problem 1

MUD rules could be not sufficient, even if all devices are MUD com-
pliant: individual users may have their deployment setup which may
require specific rules

Problem 2

Manufacturers are not able to define rules for IoT devices that behave
as general purpose devices (Alexa, Google Home, smartphone etc.),
and users as well
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User Policy Server (UPS)
It provides the opportunity to an administrator/end-user to interact with
MUD components through a user-friendly interface, thus allowing to define
rules suitable for the network in which MUD is deployed1
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The administrator rules are defined through specific MUD Files (UPS Files).
1SoK: Beyond IoT MUD Deployments – Challenges and Future Directions,
https://arxiv.org/abs/2004.08003
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Federated Learning: Overview

“bringing the code to the data, instead of the data to the code”

This approach allows to do model learning on edge-devices, while keeping
all the training data on them
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Implementation problems:

1. Model distribution
2. Device’s state communication
3. Training requests management
4. Model cryptography (?)
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Federated Learning: Our approach

• Model distribution
→ PySyǒt framework that employs WebSockets to communicate the global
model to Federated Learning participants and is built on top of PyTorch

• Device’s state communication
→ Pattern publish/subscribe implemented through MQTT
→ Three states: TRAINING, INFERENCE, NOT_READY
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Federated Learning: Our approach

• Training requests management

→We introduce the temporal window concept, in which the Coordinator
waits and collects training requests.

→The devices can remove or drop themselves from the Coordinator’s
devices list

→ Useful to define lower bound threshold, upper bound threshold and
device selection criteria
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CoLearn: MUD and FL together

• Introduction of an entity hosting UPS and FL Coordinator
• Device filtering: only MUD compliant devices can participate in the
Federated Learning Protocol
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Deployment

• Router: NETGEAR WNDR 3700v2
• Machine hosting UPS and Coordinator: MacBook Pro Intel Core i5 e 8 GB
RAM

• Edge devices: two Raspberry Pi 3B+ running FL clients and supporting the
Python environment needed for PySyǒt.

• Data-set: Bot-IoT Dataset2

• Computational model: Feed-Forward neural network (2 hidden layers, one
with 50 neurons and the other with 30 neurons, an input size of 10)
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2https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/
ADFA-NB15-Datasets/bot_iot.php 16
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CoLearn evaluations

Experiments performed: Temperature monitoring, Bandwidth monitoring,
Training Loss, Training Time

• The number of iterations influences the temperature of the components
involved
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• Total outgoing traffic, as expected, is strictly correlated to the model
dimension, number of rounds, and the number of devices involved

• As expected, the total training time increases with total number of
iterations

Iterations Rounds Total Training Training
iterations time (s) loss

1 1000 3 3000 26.868 0.001814
2 1000 6 6000 53.148 0.001068
3 1000 12 12000 105.921 0.000863
4 2000 3 6000 38.378 0.00107
5 2000 6 12000 76.139 0.000877
6 3000 3 9000 56.467 0.000957
7 3000 6 18000 112.247 0.000852
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Impact of Privacy Preservation via SMPC

Secure Multi-Party Computation: it replaces the key concept with party
concept
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Conclusions

In summary we provided:

• a user-friendly interface able to interact with MUD components
• infrastructure Federated Learning based able to interact with real devices
• a direction to optimise the Federated Learning trade-off
• infrastructure that can use and train anomaly detection models and ready
for Transfer Learning

• to the best of our knowledge, the first deployment hosting both MUD and
FL
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Discussion and Future Works

In the current CoLearn deployment:

• we assumed that edge devices (RPis) do not fail in the training phases and
during their activity of traffic eavesdropping.

• we did not focus on IoT device identification and authentication, which is
vital for both MUD-compliant networks and FL architecture

Future CoLearn deployment could include:

• Extension of YANG-based MUD file by adding a field containing structure
and weights of a model

• Improving of UPS functionalities
• Adaptive temporal window sizing
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Q&A

Thanks!

Questions?

For more info, please contact:
Angelo Feraudo <angelo.feraudo@studio.unibo.it>

(<aferaudo34@gmail.com>)
Dr Poonam Yadav <poonam.yadav@york.ac.uk>

(@pooyadav)
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