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GROWTH OF DATA COLLECTION

In 2020 there will be 
40x more bytes of 
data than there are 
stars in the 
observable universe.

Infographic source: rightedge

DOMO report
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https://www.slideshare.net/CloudIDSummit/cis13-big-data-analytics-vendor-perspective-insights-from-the-bleeding-edge?from_action=save
https://www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-boggling-facts-everyone-must-read/#aa485a517b1e


GROWTH OF MACHINE LEARNING SERVICES

Data Science 
platforms that 
support machine 
learning are 
predicted to grow at 
a 13% CAGR through 
2021

Machine learning

5 Year Growth Rate: 34%

• Published patent 
applications for Patent 
Classification G06N 
“Computer Systems Based 
on Specific Computational 
Models” grew at a 
compound annual rate of 
34% from 2013 to 2017.

• This includes machine 
learning and artificial 
neural networks.

Forbes article

Company
2017 Published 

Applications

IBM 654

Microsoft 139

Google 127

LinkedIn 70

Facebook 66

Intel 52

Fujitsu 49

https://www.forbes.com/sites/louiscolumbus/2018/02/18/roundup-of-machine-learning-forecasts-and-market-estimates-2018/#2b91bb5a2225


REACTION: DEMAND FOR PRIVACY



Structure
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DEEP LEARNING

Learning Process

1. Shuffle data and divide
into batches

2. Feed batches forward
through the network

3. Calculate Error

4. Backpropagate the error

5. Use gradients to update weights

𝑐1

𝑐2

𝑥1

𝑥2

𝑥3

+1

Multiple
epochs

Loss function



1. Same model structure & parameters 
are initialized at each participant

2. Each participant conducts local 
training on their private dataset, 
resulting in updated parameters

3. Locally updated model parameters 
are sent to the parameter server

4. Server aggregates the parameter 
updates using Federated Averaging

5. New, aggregated parameters are 
broadcast to all participants

FEDERATED TRAINING: LEVERAGING EDGE DEVICES

. . .

𝑷𝟏 𝑷𝟐 𝑷𝑵

Parameter Aggregation

Model 
Hosting 
Service

Multiple
iterations



Membership Inference Attacks:

Given training dataset 𝐷, and a model 
𝑀 trained on 𝐷, and a data point 𝑥.

Can an attacker determine if 𝑥 ∈ 𝐷?

PRIVACY LEAKAGE IN FL SYSTEMS: SERVER, CLIENT, MODEL USER

. . .
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Privacy Leakage Points:
Aggregator
Participants
Model Users

1
2
3

Attacker: Aggregator (Passive)

Dataset Attack Accuracy[1]

Purchase History (100 class) 72.4%

Texas Hospital Stays 66.4%

CIFAR-100 (AlexNet) 85.1%

[1] Nasr, M., R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning: Passive and active white-
box inference attacks against centralized and federated learning. 2019 IEEE Symposium on Security and Privacy (SP).

Attacker: Aggregator (Active)

Dataset Attack Accuracy[1]

Purchase History (100 class) 82.5%

Texas Hospital Stays 71.7%

CIFAR-100 (AlexNet) 92.1%

Attacker: Participant (Passive)

Dataset Attack Accuracy[1]

Purchase History (100 class) 65.8%

Texas Hospital Stays 62.4%

CIFAR-100 (AlexNet) 73.1%

Attacker: Participant (Active)

Dataset Attack Accuracy[1]

Purchase History (100 class) 69.8%

Texas Hospital Stays 66.4%

CIFAR-100 (AlexNet) 76.3%

Attacker: Model Users

Dataset Attack Accuracy[1]

Purchase History (100 class) 67.6%

Texas Hospital Stays 63.0%

CIFAR-100 (AlexNet) 74.2%



DIFFERENTIAL PRIVACY

Definition

Differential Privacy [1]: A randomized mechanism 𝐾 provides 𝜖, 𝛿 -
differential privacy if for any two neighboring databases 𝐷1 and 𝐷2
that differ in only a single entry and ∀𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 𝐾

Pr 𝐾 𝐷1 ∈ 𝑆 ≤ 𝑒𝜖 ⋅ Pr 𝐾 𝐷2 ∈ 𝑆 + 𝛿

If 𝛿 = 0, 𝐾 is said to satisfy 𝜖-differential privacy.

***Limits the impact that any one instance
can have on the mechanism output***

[1] Dwork. Differential Privacy: A Survey of Results. 2008. International Conference on Theory and Applications of Models of Computation

https://link.springer.com/chapter/10.1007/978-3-540-79228-4_1


PRIVACY ACCOUNTING

Composition Property

Sequential Composition property[1]: Let 𝑓1, 𝑓2, … , 𝑓𝑛 be 𝑛 algorithms 
such that for each 𝑖 ∈ 1, 𝑛 , 𝑓𝑖 satisfies (𝜖𝑖 , 𝛿𝑖)-differential privacy. 
Then,

Releasing the outputs of 𝑓1 𝐷 , 𝑓2 𝐷 ,… , 𝑓𝑛 𝐷 satisfies 
σ𝑖=1
𝑛 𝜖𝑖 , σ𝑖=1

𝑛 𝛿𝑖 -DP.

***Multiple passes on a dataset causes 
additive privacy loss in differential privacy***

[1] Dwork et al. The algorithmic foundations of differential privacy. 2014. Foundations and Trends® in Theoretical Computer Science.

http://www.nowpublishers.com/article/Details/TCS-042


LOCAL DIFFERENTIAL PRIVACY

Definition

𝜖-LDP [1]: A randomized mechanism Ψ provides 𝜖- local differential 
privacy where 𝜖 > 0, if and only if for any inputs 𝑣1, 𝑣2 in universe  𝒰
and ∀𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒 Ψ , we have:

Pr Ψ 𝑣1 = 𝑦 ≤ 𝑒𝜖 ⋅ Pr Ψ 𝑣2 = 𝑦

***Protects the raw value (input to 𝚿) from
privacy inference according to 𝝐***

[1] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting telemetry data privately. In Advances in Neural Information Processing Systems. 3571–3580.



𝛼 -CONDENSED LOCAL DIFFERENTIAL PRIVACY

Definition

𝛼-CLDP [1]: A randomized mechanism Φ provides 𝛼- condensed local 
differential privacy where 𝛼 > 0, if and only if for any inputs 𝑣1, 𝑣2 in 
universe  𝒰 and ∀𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒 Φ , we have:

Pr Φ 𝑣1 = 𝑦 ≤ 𝑒𝛼⋅𝑑 𝑣1,𝑣2 ⋅ Pr Φ 𝑣2 = 𝑦

***Protects the raw value (input to 𝚽) from 
privacy inference according to 𝜶 and 𝒅(⋅,⋅)***

[1] M. Emre Gursoy, A. Tamersoy, S. Truex, W. Wei, and L. Liu. 2019. Secure and utility-aware data collection with condensed local differential privacy. 
IEEE Transactions on Dependable and Secure Computing (2019). 
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Selected updates are aggregated
New model parameters are sent back
Local models are updated

Client Perspective
1. Participants initialize local DNN instances w/ 𝜃0

and each local LDP Module w/ individual privacy 
preferences.

2. Each participant 𝑃𝑖 locally computes training 
gradients according to 𝐷𝑖.

3. Each 𝑃𝑖 perturbs their gradients according to 
their local instance of the LDP Module.    

4. The 𝑘-Client Selection Module accepts update 
from each 𝑃𝑖 w/ probability 𝑞 = 𝑘/𝑁

5. Each participant waits to receive aggregated 
parameter updates from the parameter server 
and then updates its local DNN 

6. Each 𝑃𝑖 proceeds to step 2 to start the 
next iteration.

Server Perspective
1. The parameter server generates initial model 

parameters 𝜃0 and sends to each participant.
2. The server waits to receive 𝑘 parameter 

updates randomly selected by the 𝑘-Client 
Selection Module.

3. Once parameter updates are received, the 
Aggregation Module aggregates the updates, 
i.e. averages the gradient updates to determine 
new model parameters.

4. The parameter server updates model 
parameters and sends updated values back to 
participants to update local models.



• Individual participants locally define LDP-Module in LDP-Fed

• Privacy guarantee, privacy mechanism parameters

• Privacy risk is not uniform:

• Smaller datasets [1]

• Minority group representation [2][3]

• Privacy requirements may not be uniform

LDP MODULE: PERSONALIZATION

[1] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. 
In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 3–18.

[2] Reza Shokri, Martin Strobel, and Yair Zick. Privacy risks of explaining machine learning models. arXiv preprint arXiv:1907.00164 (2019).
[3] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Wenqi Wei, and Lei Yu. Effects of Differential Privacy and Data Skewness on Membership Inference Vulnerability. 

arXiv preprint arXiv:1911.09777 (2019).

Target Population Attack Accuracy [3]

Aggregate 70.14%

Male Images 68.18%

Female Images 76.85%

White Race Images 62.77%

Racial Minority Images 89.90%



• Privacy requirement: guarantee 𝛼-CLDP for each participant in FL training of DNN

• Must partition 𝛼 into 𝐸 small budgets! (one for each of the 𝐸 total iterations) such that

𝛼 = 

𝑖=0

𝐸−1

𝛼𝑖

• Let 𝜃𝑖 = # of parameter updates to be uploaded to the parameter server at iteration 𝑖
and 𝛼𝑖 be the allocated portion of the overall privacy budget. We then set

𝛼𝑝 =
𝛼𝑖
𝜃𝑖

• 𝛼𝑝 is the privacy budget when applying 𝛼-CLDP to each parameter update in 𝜃𝑖

LDP MODULE: PRIVACY BUDGET ALLOCATION



• Basic implementation of 𝛼-CLDP in FL divides the budget by (1) number of iterations and 
(2) number of parameters in the model:

𝛼𝑝 =
𝛼

𝑞𝐸 𝜃

• Approach in 𝛼-CLDP-Fed is to reduce (2) to only upload a subset of the parameters 𝜃𝑖 at 
each iteration and therefore increase the budget 𝛼𝑝 (and corresponding accuracy) for 

parameters which are uploaded

• In LDP-Fed: 𝜃𝑖 corresponds to 1 layer of the DNN with earlier iterations updating later 
layers and proceeding iterations moving backward through the network.

• Number of iterations and portion of the privacy budget allocated to an individual layer ℓ
is directly proportionate to the size of that layer (with a minimum of 1 iteration)

LDP MODULE: PARAMETER SELECTION



• LDP-Fed cycles further control when different parameter updates are shared

• Each cycle is implemented in terms of iteration rounds

• Let 𝑐′ = number of cycles. One cycle is then 
𝐸

𝑐′
rounds. 

• Rounds within each cycle are then allocated to individual layers in the same manner, 
with number of rounds allocated being proportional to layer size. 

• In LDP-Fed, the default cycle value is set to 5.

LDP MODULE: CYCLES



• Let 𝜃𝑖 be the parameters selected for upload by the LDP Module at iteration 𝑖

• For each parameter 𝑝 ∈ 𝜃𝑖 the LDP Module then applies the appropriate LDP Mechanism; 
for 𝛼-CLDP-Fed…

Exponential Mechanism

Exponential Noise Mechanism[1]: Let 𝑣 ∈ 𝒰 be the raw user data, and let the Exponential Mechanism Φ𝐸𝑀

take as input 𝑣 and output a perturbed value in 𝒰, i.e.m Φ𝐸𝑀: 𝒰 → 𝒰. Then, Φ𝐸𝑀 that produces output 𝑦
with the following probability satisfies 𝛼-CLDP.

∀𝑦 ∈ 𝒰: Pr Φ𝐸𝑀 𝑣 = 𝑦 =
𝑒
−𝛼⋅𝑑 𝑣,𝑦

2

σ𝑧∈𝒰 𝑒
−𝛼⋅𝑑 𝑣,𝑧

2

***Add noise to each parameter value 
to achieve 𝜶-condensed local differential privacy***

LDP MODULE: EXTENDING LDP MECHANISM [1]

[1] M. Emre Gursoy, A. Tamersoy, S. Truex, W. Wei, and L. Liu. 2019. Secure and utility-aware data collection with condensed local differential privacy. 
IEEE Transactions on Dependable and Secure Computing (2019). 



• Conventional FL systems do not query every participant in every round

• Efficiency

• Availability (WiFi, power, etc.)

• Training in LDP-Fed: only 𝑘 ≤ 𝑁 participants' parameter updates selected per round

• Discarded updates do not introduce any privacy cost

Sampling Amplification 

Allows for a tighter bound of 𝛼 = σ𝑖=0
𝐸−1 𝑞 ⋅ 𝛼𝑖 where 𝑞 =

𝑘

𝑁
≤ 1.

𝑘 -CLIENT SELECTION MODULE
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RESULTS: LDP-FED ACCURACY IN DL VS LDP-BASIC

𝛼 = 1.0

• CLDP-Basic: below the random guess 
baseline of 10% ⟹ applying the 
privacy budget uniformly leads to 
untenable accuracy loss.

• LDP-Fed Single Layer approach 
significantly improves performance

• LDP-Fed’s proportionate budget and 
iteration allocation further improves 
accuracy by an additional ~2%



RESULTS: LDP-FED VS OPTIMIZER-BASED DP
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(ε,δ)-Hybrid-One (ε,δ)-DPSGD

𝛼 = 1

• Adversarially equivalent 𝜖 computed 
from [1], 𝛿 = 10−5

• 𝛼-CLDP-Fed outperforms DPSGD by 
~6.8% and Hybrid-One by ~3.5%

• Φ𝐸𝑀 in the LDP Module can be 
applied in parallel compared to cost 
of optimizer efficiency in DPSGD and 
Hybrid-One

• LDP-Fed requires no heavy 
cryptographic protocols



LDP-FED SYSTEM FEATURES

Privacy-Preserving 
Federated Learning 

Method
Efficient

Locally Defined 
Privacy 

Guarantee

Protection 
from Inference 

Attacks

Handles 
Complex 
Models

SMC [1]

𝜖-DP Paramater 
Sharing [2]

Local Optimizer [3]

Hybrid-One [4]

𝛼-CLDP-Fed

Efficient

• LDP-Fed does not require the use of heavy cryptographic protocols
• LDP Mechanisms can be applied to each parameter in parallel

[1] Keith Bonawitz, Vladimir Ivanov, Ben 
Kreuter, Antonio Marcedone, H Brendan 
McMahan, Sarvar Patel, Daniel Ramage, 
Aaron Segal, and Karn Seth. 
Practical secure aggregation for privacy-
preserving machine learning. In 
Proceedings of the 2017 ACM SIGSAC 
Conference on Computer and 
Communications Security. ACM, 1175–1191

[2] Reza Shokri and Vitaly Shmatikov. 2015. 
Privacy-preserving deep learning. In 
Proceedings of the 22nd ACM SIGSAC 
Conference on Computer and 
Communications Security. 1310–1321.

[3] Martin Abadi, Andy Chu, Ian Goodfellow, 
H Brendan McMahan, Ilya Mironov, Kunal 
Talwar, and Li Zhang. Deep learning with
differential privacy. In Proceedings of the 
2016 ACM SIGSAC Conference on Computer
and Communications Security. 308–318

[4] Stacey Truex, Nathalie Baracaldo, Ali Anwar, 
Thomas Steinke, Heiko Ludwig, Rui Zhang, 
and Yi Zhou. 2019. A hybrid approach to 
privacy-preserving federated learning. In 
Proceedings of the 12th ACM Workshop on 
Artificial Intelligence and Security. 1–11

Locally Defined Privacy Guarantee

• Each participant can locally define their privacy guarantee and 
privacy parameters

• Allows for adherence to local policies and compute restrictions

Protection from Inference Attacks

• Protects from inference in the context of complete training lifecycle

Handles Complex Models

• LDP-Fed layer approach allows for system to maintain utility and 
control noise with large models



• LDP-Fed: a novel FL approach with communication efficient LDP

• An edge system for distributed and collaborative training with a large population of clients

• Participants efficiently train complex models + formal privacy protection

• Participants customize their LDP privacy budget locally 

• The 𝛼-CLDP-Fed algorithm extends traditional LDP intended for single categorical values, 
to handle high dimensional,  continuous, and large scale model parameter updates

• LDP-Fed parameter selection approach prevents LDP noise from overwhelming model 
updates → balancing utility, privacy trade-off

• Comparison of LDP-Fed with the state-of-the-art privacy-preserving FL approaches in 
both accuracy and system features.

CONCLUSION


